Bounded Pairs in 1-D and 2-D Models

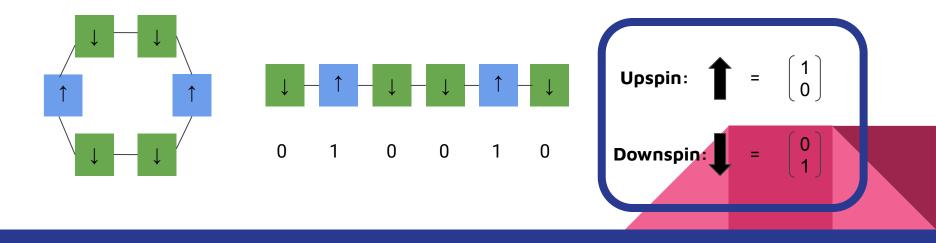
Eliana Feifel, Chemda Wiener, and Lea Santos Yeshiva University, Stern College for Women

Overview...

- Spin ½ model: this model describes many-body quantum systems, which are everywhere, but they are not so well understood because they are so complex.
- We studied the dynamics/evolution of these types of systems, how they depend on the interactions between the spins and on the presence of a defect within the system.
- We looked at 1D systems/chains, my colleague and friend will present the 2D case.

Our 1-D System

- We have a chain, where on each site there is a spin-½ particles. A magnetic field pointing down in the z-direction acts on the entire system, so each spin-1/2 either points up or down in the z-direction. When the spin points upwards, we call it an excitation. This spin has more energy than the down-spin, because it is against the magnetic field. A spin-½ pointing downwards is in its ground state.
- This 1D spin-1/2 system can be either in chain or ring formation. We consider the latter.



The Hamiltonian that describes our system

$$H = \frac{1}{2}\epsilon_d\sigma_d^z + \frac{1}{2}\sum_{j=1}^L h\sigma_j^z + \frac{1}{4}\sum_{j=1}^L \left[J_z\sigma_j^z\sigma_{j+1}^z + J_{xy}(\sigma_j^x\sigma_{j+1}^x + \sigma_j^y\sigma_{j+1}^y)\right]$$

- All of the sigmas are the Pauli matrices
- *h* is the amplitude of the magnetic field acting on the entire chain
 - ε_d is the amplitude of a magnetic field that acts on a single site and because of this is the "defect" site
- σ^z is the Pauli matrix in the z-direction. The $\sigma^z_{j} . \sigma^z_{j+1}$ term is called the Ising Interaction. Jz is the interaction strength of the Ising Interaction. The interaction happens between neighboring sites and affects the energy of the spin configurations. <1010|H|1010> = -Jz

Ising Interaction

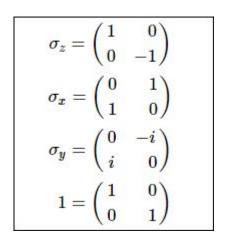
$$\frac{J_z}{4}\sigma_n^z\sigma_{n+1}^z|\uparrow_n\uparrow_{n+1}\rangle = +\frac{J_z}{4}|\uparrow_n\uparrow_{n+1}\rangle$$

$$\frac{J_z}{4}\sigma_n^z\sigma_{n+1}^z|\downarrow_n\downarrow_{n+1}\rangle = +\frac{J_z}{4}|\downarrow_n\downarrow_{n+1}\rangle$$

$$\frac{J_z}{4}\sigma_n^z\sigma_{n+1}^z\big|\uparrow_n\downarrow_{n+1}\rangle = -\frac{J_z}{4}\big|\uparrow_n\downarrow_{n+1}\rangle$$

$$\frac{J_z}{4}\sigma_n^z\sigma_{n+1}^z|\downarrow_n\uparrow_{n+1}\rangle = -\frac{J_z}{4}|\downarrow_n\uparrow_{n+1}\rangle$$

The Pauli spin matrices



Further break down...

 $\frac{J_{xy}}{4} (\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y) |\uparrow_n \downarrow_{n+l}\rangle = + \frac{J_{xy}}{2} |\downarrow_n \uparrow_{n+l}\rangle$ $\frac{J_{xy}}{4} (\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y) |\downarrow_n \uparrow_{n+l}\rangle = + \frac{J_{xy}}{2} |\uparrow_n \downarrow_{n+l}\rangle$ $\frac{J_{xy}}{4} (\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y) |\uparrow_n \uparrow_{n+l}\rangle = 0$ $\frac{J_{xy}}{4} (\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y) |\downarrow_n \downarrow_{n+l}\rangle = 0$

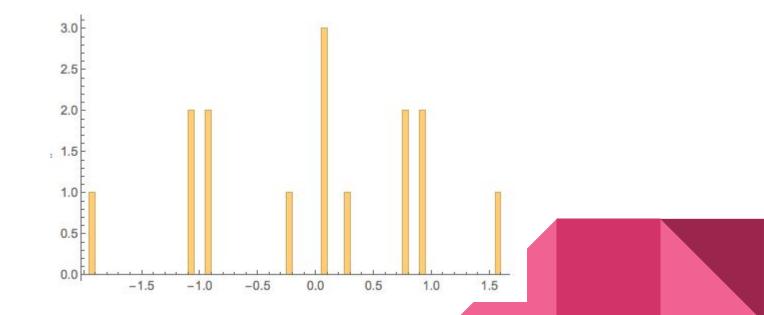
The J_{xy} term used in equations is also called "the flip flop" term because it reverses the direction of a pair of neighboring spins if they point in opposite directions. If the neighboring sites have spins that are in the same direction, then the J_{xy} term does not contribute at all. This means that the number of up-spins and down-spins in the chain are conserved. The Ising interaction contributes the diagonal elements of the Hamiltonian matrix (Ex: -Jz), while the flip flop term gives the

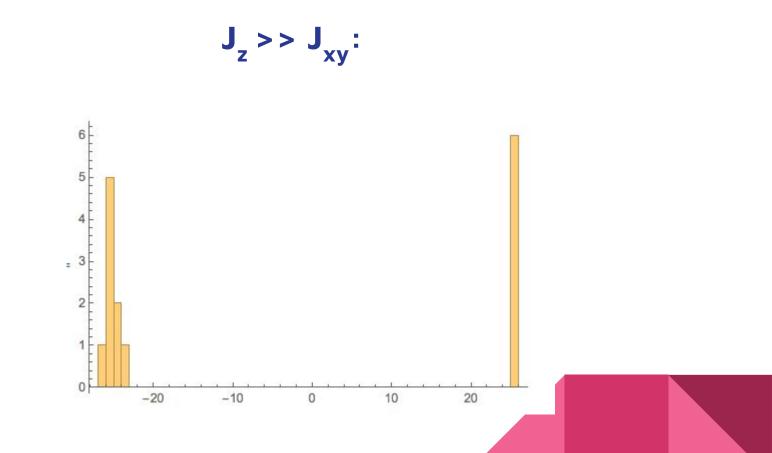
off diagonal elements (Ex: <1010|H|1100> = $J_{xy}/2$).

	1,1,0,0	1,0,1,0	1,0,0,1	0,1,1,0	0,1,0,1	0,0,1,1
1,1,0,0	$H_{11} = \epsilon/2$	$H_{12} = \frac{J_{xy}}{2}$	$H_{13} = 0$	$H_{14} = 0$	$H_{15} = \frac{J_{xy}}{2}$	$H_{16} = 0$
1,0,1,0	$H_{21} = \frac{J_{xy}}{2}$	$H_{22} = -J_z + \varepsilon/2$	$H_{23} = \frac{J_{xy}}{2}$	$H_{24} = \frac{J_{xy}}{2}$	$H_{25} = 0$	$H_{26} = \frac{J_{xy}}{2}$
1,0,0,1	$H_{31} = 0$	$H_{32} = \frac{J_{xy}}{2}$	$H_{33} = \varepsilon/2$	$H_{34} = 0$	$H_{35} = \frac{J_{xy}}{2}$	$H_{36} = 0$
0,1,1,0	$H_{41} = 0$	$H_{42} = \frac{J_{xy}}{2}$	$H_{43} = 0$	H_{44} = - $\varepsilon/2$	$H_{45} = \frac{J_{xy}}{2}$	$H_{46} = 0$
0,1,0,1	51 2		55 2		$H_{55} =$ $-J_z - \varepsilon/2$	_
0,0,1,1	$H_{61} = 0$	$H_{62} = \frac{J_{xy}}{2}$	$H_{63} = 0$	$H_{64} = 0$	$H_{56} = \frac{J_{xy}}{2}$	$H_{66} = -\epsilon/2$

Contributions to Eigenstates from Basis Vectors

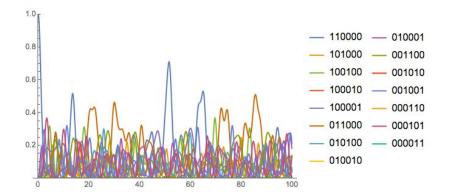
$J_z \sim J_{xy}$
-0.135591 110000 0.29342 101000 -0.352665 100100 0.29342 100010 -0.135591 100001 -0.135591 011000 0.29342 010100 -0.135591 011000 contribut contribut -0.352665 010010 0.29342 010001 -0.352665 010010 0.29342 010001 eigenstat 0.29342 001010 -0.135591 001100 -0.352665 001001 -0.135591 001100 -0.352665 001001 -0.135591 000110 -0.135591 000110 -0.135591 000110

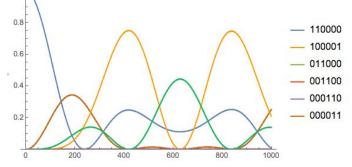




Evolution of the Initial State |110000>

1.0

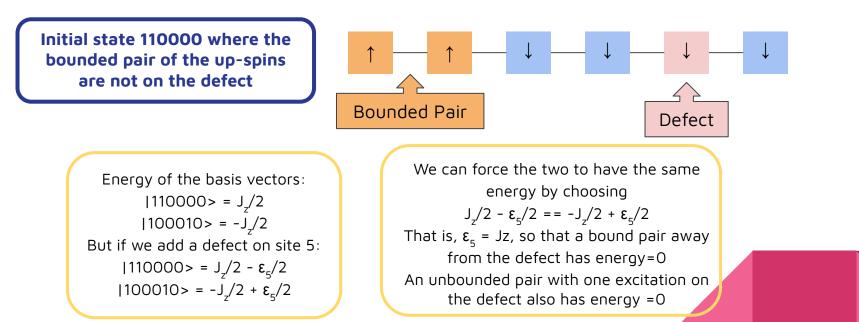




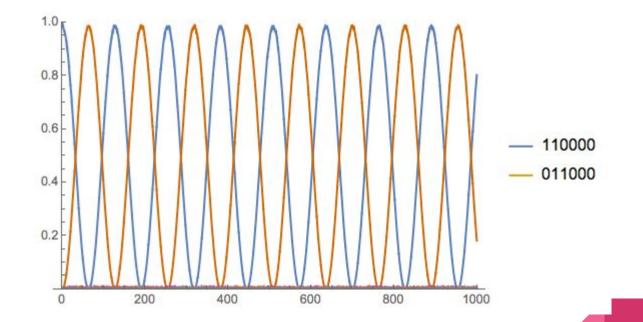
J_z ~ J_{xy}: In this scenario, the bound pair splits, so the excitations spread quickly throughout the chain

J_z >> J_{xy}: In this scenario, the bound pair doesn't split, but rather it moves slowly as a single heavy excitation

System with a Defect:



Evolution of |110000> with a Defect:



Bounded pairs are robust - we cannot split them!