Bounded Pairs in 1-D and 2-D Models

Chemda Wiener, Eliana Feifel, and Lea Santos Yeshiva University, Stern College for Women

How does our system evolve as a result of its initial state?

shutterstock.com · 772681819

Dynamics of a system with initial state |110000>

Bounded pair away from the defect

The system can evolve into 2 configurations

Quantum Interference

Given the initial state |011000> with the defect still being on site 5, we would expect that this state could have two options to move forward:

The system can evolve into 2 configurations

Initial state: 001100

 $J_z = 10$, Eps = 10 Energy of system = $J_z/2 - Eps/2 = 0$

If the defect is on the 5th site: 001100/001010

Initial 001010 has the same energy as 001100 and in dynamics that state appears. The sum of theses two graphs equals 1, implying 100% participation.

Dynamics of a system with initial state |101000>

Unbounded up-spins away from the defect

→ ↑ → ↓ → ↓ Defect

The initial state has an energy of $-J_z/2 - eps/2 = -10$. This number is from the J_z value: $J_z = 10$. If we count the Ising interactions, we get the value of $-J_z/2$. The defect does not contribute to the energy of the system as the up-spins are far from it.

Dynamics of a system with initial state |000110>

Bounded pair on defect

The initial state has an energy of

 $J_{z}/2 + Eps/2 = 5 + 5 = 10.$

Bound pairs in 1-D are robust

What did we understand up to this point?

Bound pairs cannot split even if we have a defect that would allow for it in energy conservation.

Will this persist in a 2-D system where there are many more possible channels for our excitations to move?

Site Interactions in 2-D

• The matrices on the right represent a 3x3 2-D system.

	1	1	0	1	1	Θ	1)
	Θ	Θ	Θ	,	Θ	Θ	Θ
Į	0	Θ	0		(O	Θ	0)
8	0	1	1	Ĩ	0	1	0
	Θ	Θ	Θ	,	1	Θ	0
į	0	Θ	Θ		0	Θ	0)

Our 2-D System

- Similarly to our 1-D system, the first and last site connect, forming a chain. With a 2-D system, the first and last site of every column connect as well. Ultimately, this forms a donut like shape, as displayed in the image to the left.
- It's important to note that the the inner circle does not correspond to a stronger interaction.

Every Basis in the 2-D System

$\left\{ egin{pmatrix} 1 \\ 0 \\ 0 \end{bmatrix} ight\}$	1 0 0	$\left[\begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right]$,	$\left(\begin{array}{c} 1\\ 0\\ 0\end{array}\right)$	0 0 0	1 0 0),	(1 1 0	0 0 0	$\begin{bmatrix} \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \end{bmatrix}, \begin{bmatrix} \mathbf{O} \\ \mathbf{O} \end{bmatrix}$	1 (9] 9 (9 1 9	0 0 0),	$\left(\begin{array}{c}1\\0\\0\end{array}\right)$	0 0 0	0 1 0	,	(1 0 1	0 0 0	$\left[\begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right]$,	$\left(\begin{array}{c}1\\0\\0\end{array}\right)$	0 0 1	0 0),	$\left(\begin{array}{c}1\\0\\0\end{array}\right)$	0 0 0	$\left. \begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix} \right)$,	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	1 0 0	1 0 0	,
(0 1 0	1 0 0	$\left. \begin{smallmatrix} \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \end{smallmatrix} \right)$,	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	1 1 0	0 0 0),	$\left(\begin{array}{c} \mathbf{O}\\ \mathbf{O}\\ \mathbf{O}\\ \mathbf{O}\end{array}\right)$	1 0 0	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	9 1 9 (1 (1 9 9	⊙ ⊙ ⊙),	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	1 0 1	0 0 0	,	$\left(\begin{array}{c} \Theta\\ \Theta\\ \Theta\\ \Theta\end{array}\right)$	1 0 0	0 0 1	(0 1 0	0 0 0	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$,	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	0 1 0	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$,	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	0 0 0	1 1 0	,
(0 0 1	0 0 0	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$,	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	0 0 1	$\left. \begin{smallmatrix} \mathbf{l} \\ 0 \\ 0 \end{smallmatrix} \right)$,	$\left(\begin{array}{c} \mathbf{O}\\ \mathbf{O}\\ \mathbf{O}\\ \mathbf{O} \end{array}\right)$	0 0 0	1 0 1), (9 (1 1 9 (9 1 9	⊙ ⊙ ⊙),	$\left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right)$	0 0 0	0 1 0	,	(0 1 1	0 0 0	⊙ ⊙ ⊙),	$\left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right)$	0 0 1	⊙ ⊙ ⊙),	$\left(\begin{array}{c} 0\\ 1\\ 0 \end{array}\right)$	0 0 0	0 0 1	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	0 1 0	0 1 0	,
(0 0 1	0 1 0	$\left. \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$,	$\left(\begin{array}{c} 0\\ 0\\ 0 \end{array}\right)$	0 1 1	0 0 0),	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	0 1 0	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, (9 (9 (1 (0 0 0	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	0 0 1	0 1 0	,	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right)$	0 0 0	0 1 1	(0 0 1	0 0 1	$\left. \begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right)$,	(0 0 1	0 0 0	0 0 1	$\left(\begin{array}{c} \Theta\\ \Theta\\ \Theta\\ \Theta\end{array}\right)$	0 0 1	0 0 1	}

Stability in the Presence of a Defect?

Defect is on site 1

Different Initial States within the 2-D System

- BP are stable, this becomes more clear as we increase the system size
- And it is really just like a 1-D system in terms of the patterns of its dynamics, even with the defect
- When we introduce a defect to the system, the 2-D system evolves much like the 1-D system

Conclusion

- Working with my dear colleague and friend Eliana
- Benefits of taking the time to study doublons in both 1-D and 2-D models
- Working with the legendary Dr. Lea Santos

